Смоленское областное государственное бюджетное учреждение дополнительного образования

«ЦЕНТР РАЗВИТИЯ ТВОРЧЕСТВА ДЕТЕЙ И ЮНОШЕСТВА»

УТВЕРЖДАЮ

Директор СОГБУДО «Центр развития творчества детей и юношества» О.М. Агеева

27 07 2025

РАБОЧАЯ ПРОГРАММА

на 2025 / 2026 учебный год

к дополнительной общеобразовательной общеразвивающей программе

«Мастерская роботов»

Форма реализации программы – очная Год обучения – первый Номер группы – 1 Возраст обучающихся – 7-10 лет

Составитель: *Менченкова П.С.*, педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная программа «Мастерская роботов» (далее программа) является дополнительной общеобразовательной общеразвивающей **технической направленности**, очной формы обучения, для **обучающихся 7 - 9 лет**, сроком реализации 1 год, **стартового уровня** освоения содержания.

Программа разработана для обучения младших школьников конструированию, программированию и сборке действующих моделей роботов на базе металлического конструктора «Механик», электронного конструктора «Знаток», обучающего программного комплекса «Пиктомир» и работе в графическом редакторе на персональном компьютере.

Актуальность и педагогическая целесообразность программы

«Мастерская роботов» состоит в том, что в ходе освоения создаётся уникальная образовательная среда, которая способствует развитию инженерного, конструкторского мышления. В процессе работы обучающиеся приобретают опыт решения как типовых, так и нешаблонных задач по конструированию, программированию, сбору данных. Кроме того, работа в команде способствует формированию умения взаимодействовать, формулировать, анализировать, критически оценивать, отстаивать свои идеи.

Программы составлена в соответствии с государственными требованиями к образовательным программам системы дополнительного образования детей наоснове следующих нормативных документов:

- 1. Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Приказ Министерства просвещения Российской Федерации от 27 ниля 2022 года № 629 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 3. Письмо Минобрнауки РФ от 18.11.2015 № 09-3242 «О направлении рекомендаций» (вме сте « Методиче ские рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- 4. Распоряжение Правительства Российской Федерации от 4 сентября 2014 года № 1726-р «Концепция развития дополнительного образования детей»;
- 5. Распоряжение Правительства Российской Федерации от 29 мая 2015 года № 996-р «Стратегия развития воспитания в Российской Федерации на период до 2026 года»;
- 6. Постановление Правительства Российской Федерации от 30 декабря 2015 года

№ 1493 «О государственной программе «Патриотическое воспитание граждан Российской Федерации на 2016-2020 годы»;

7. Постановление Главного государственного санитарного врача РФ от 04.07.2014 N 41"Об утверждении СанПиН 2.4.4.3172-14 "Санитарно- эпидемиологические требования к устройству, содержанию и организации режима работы образовательных

организаций дополнительного образования детей;

- 8. Федеральная целевая программа развития образования на 2016-2020 годы, утвержденная Постановлением Правительства Российской Федерацииот23 мая 2015 года № 1499;
 - 9. Устав учреждения. Локальные нормативные акты учреждения.

От личительной особ енностью программы яв ляет ся комбинированное использование наборов конструкторов и персонального компьютера, которое обеспечивает простоту при сборке начальных моделей, что позволяет получить результат в пределах одного или пары уроков. Возможности в изменении моделей и программ очень широкие и такой подход позволяет обучающимся усложнять модель и программу, проявлять самостоятельность в изучении темы.

Программа модифицированная - составлена на основе программ дополнительного образования по робототехнике, разработанных другими педагогами и изученных в сети Интернет.

Адресат программы

Обучение по данной программе рассчитано на обучающихся в возрасте 7-8 лет.

Объём программы — 152 часа.

Уровень освоения содержания – стартовый

Форма обучения – очная

При планировании образовательного процесса предусматриваются следующие формы организации познавательной деятельности:

- коллективные (фронтальные со всем составом);
- групповые (работа в группах, бригадах, парах);
- индивидуальные.

Формы организации учебных занятий

- консультации;
- практикумы;
- проекты;
- проверки и коррекции знаний и умений;
- выставки;
- соревнования.

Срок освоения программы – 1 год

Режим занятий –2 раз в неделю по 2 часа.

Условия реализации программы

Группы формируются в соответствии с возрастом обучающихся, без предварительного отбора, по заявлению родителей. Допускается комплектование разновозрастных групп.

Цель и задачи программы

Цель программы:

Формирование у обучающихся теоретических основ и практических навыков в области начального технического конструирования и основ программирования, применяемых при последующей разработке робототехнических устройств в малых группах.

Задачи программы Образовательные:

- ознакомить обучающихся с комплексом базовых технологий, применяемых при создании роботов;
- формировать умения и навыки работы с простейшими инструментами, закреплять их на практике
- научить решать ряд кибернетических задач, результатом каждой из которых будет работающий механизм или робот с автономным управлением;
- формировать графическую культуру на начальном уровне: умение читатьпростейшие чертежи, изготавливать по ним модели;
- познакомить с миром инженерных профессий;
- способствовать ранней профессиональной ориентации обучающихся.

Развивающие:

- развивать у обучающихся инженерное мышление, навыки конструирования, программирования и эффективного использования кибернетических систем;
- развивать мелкую моторику, внимательность, аккуратность и изобретательность;
- развивать креативное мышление;
- развивать пространственное воображение.

Воспитательные:

- повышать мотивацию обучающихся к изобретательству и созданиюсобственных роботизированных систем;
- формировать у обучающихся стремление к получению качественногозаконченного результата;
- формировать навыки работы в команде.

Используемые современные педагогические и информационные технологии:

- 1. Здоровье сберегающие технологии (использование физкультминуток, упражнений для глаз, упражнений и игр для снятия напряжения с рук и общей усталости. А также использование личностного подхода к обучению, создание благоприятной психологической атмосферы, повышающей самооценку обучающихся, мотивацию к деятельности и творческий потенциал);
- 2. ТРИЗ (применяется при решении проектной конструкторской задачи: позволяет выявить суть задачи, определиться с основным направлением поиска, систематизировать информацию по выбору задачи и поиску направлений её решения, составить алгоритм решения, а также, позволяет найти нетрадиционное решение технической задачи, превратив конструирование в творческий процесс);
- 3. Проектные технологии (выполнение итогового и творческих проектов);
- 4. Технологии развития критического мышления (разрабатывать

собственное решение определённой конструкторской задачи);

- **5.** Проблемного обучения (используются при рассмотрении исследовательской задачи, постановки гипотезы и доказательства в рамках разработки собственного проекта);
- **6.** ИКТ технологии (использование учебно-методических, мультимедийных ресурсов, графиков, схем и т.д.);
- 7. Традиционные методы обучения (позволяют в рамках учебной деятельности соблюдать её систематический характер, логику и упорядоченность подачи материала, обеспечивать организационную чёткость).

Планируемые результаты обучения Предметные результаты.

В результате освоения программы обучающиеся должны:

Знать:

- 1. роль и место робототехники в жизни современного общества;
- 2. основные сведения из истории развития робототехники в России
- 3. основные понятия робототехники, основные технические термины, связанные с процессами конструирования и программирования роботов;
- 4. общее устройство и принципы действия роботов;
- 5. основные характеристики основных классов роботов;
- 6. общую методику расчета основных кинематических схем;
- 7. порядок поиска неисправностей в различных роботизированных системах;
- 8. методику проверки работоспособности отдельных узлов и деталей;
- 9. основы популярных языков программирования;
- 10. основные законы электрических цепей, правила безопасности при работе с электрическими цепями, основные радиоэлектронные компоненты;
- 11. определения робототехнического устройства, наиболее распространенные ситуации, в которых применяются роботы;
- 12. о перспективах развития робототехники, основные компоненты программных сред;
- 13. основные принципы компьютерного управления, назначение и принципы работы цветового, ультразвукового датчика, датчика касания, различных исполнительных устройств;
- 14. различные способы передачи механического воздействия, различные виды шасси, виды и назначение механических захватов;

Уметь:

- 1. собирать простейшие модели с использованием NXT;
- 2. самостоятельно проектировать и собирать из готовых деталей манипуляторы и роботов различного назначения;
- 3. использовать для программирования микрокомпьютер NXT

(программировать на дисплее NXT);

- 4. работать в визуальной среде программирования, программировать собранные конструкции под задачи начального уровня сложности;
- 5. разрабатывать и записывать в визуальной среде программирования типовые команды управления роботом;
- 6. пользоваться компьютером, программными продуктами, необходимыми для обучения программе;
- 7. подбирать необходимые датчики и исполнительные устройства, собирать простейшие устройства с одним или несколькими датчиками, собирать и отлаживать конструкции базовых роботов;
- 8. правильно выбирать вид передачи механического воздействия для различных технических ситуаций, собирать действующие модели роботов, а также их основные узлы и системы.

Личностные результаты:

В результате освоения программы обучающиеся должны:

- 1. уметь ориентироваться в информационном пространстве;
- 2. искать информацию в свободных источниках и структурировать её;
- 3. самостоятельно создавать способы решения проблем творческого и поискового характера;
 - 4. обладать навыками критического мышления;
- 5. уметь генерировать, комбинировать, видоизменять и улучшать идеи;
- 6. уметь с уважением относиться к собственному и чужому труду.

Метапредметные результаты:

В результате освоения программы обучающиеся должны:

- 1. уметь слушать и слышать собеседника;
- 2. уметь аргументировано отстаивать точку зрения;
- 3. уметь работать индивидуально и в группе;
- 4. уметь формулировать проблему, выдвигать гипотезу, ставить вопросы;
- 5. уметь правильно организовывать рабочее место и время для достиженияпоставленных целей;
- 6. уметь вести собственный проект.

Аттестация

Входная аттестация – 16.09.2025 по 26.09.2025 г. Проверка знаний, умений. Форма проведения – проверочная практическая работа.

Промежуточная аттестация – с 15.12.2025 по 25.12.2025 г. Проверка знаний, умений.

Форма проведения – проверочная практическая работа.

Итоговая аттестация — c.15.05.2026 по 25.05.2026 г. Проверка знаний, умений, освоенных навыков.

Форма проведения – практическая работа.

Формы аттестации

контрольные занятия по изученным темам;

- практическая работа;
- конкурсы;
- в конце года итоговый проект.

Программой предусмотрены текущий контроль, промежуточная и итоговая аттестации.

Текущий контроль (в течение всего учебного года) — проводится после прохождения каждой темы, чтобы выявить пробелы в усвоении материала и развитии обучающихся, заканчивается коррекцией усвоенного материала.

Преобладающей формой текущего контроля выступает проверка работоспособности робота:

- выяснение технической задачи,
- определение путей решения технической задачи.

Форма проведения - тестирование и практическая работа в рамках полученных знаний и умений. Баллы за тестирование и практическую работу суммируются.

Промежуточная аттестация — проводится в середине учебного года (декабрь) по изученным темам для выявления уровня освоения содержания программы и своевременной коррекции учебно-воспитательного процесса.

Итоговая аттестация обучающихся проводится в форме проектов. Итоговые проекты выносятся на робототехнические соревнования, конкурсы, выставки технического творчества и конференции.

Примерные направления соревнований и требования к роботам:

- 2. Соревнования в процессе непосредственного противоборства. Требования к моделям прочность конструкции, достаточная мощность и маневренность, понимание физических принципов поведения движущегося механизма.
- 3. Соревнования на выполнение игровой ситуации. Требование к конструкции подвижность, согласованность движений, оперативность и развитость управленческого алгоритма.
- 4. Соревнования в преодолении сложной и естественной геометрии трассы. Требование к конструкции реализация сложной (слабо предсказуемой, адаптивной) траектории движения механизма.
- 5. Соревнования по правилам робототехнических фестивалей, конференцийи выставок. Требования к конструкции по спецификации мероприятий.

Формы контроля

- 1. Проверочные работы (выполняются в форме тестирования по каждому разделу и оцениваются по количеству набранных баллов).
- 2. Практические занятия.
- 3. Выставки.
- 4. Творческие проекты.
- 5. Презентация групповых проектов.

Разработка каждого проекта реализуется в форме выполнения

конструирования и программирования модели робота для решения предложенной задачи.

Примерное задание для практической работы и критерии оценки Сборка и программирование модели.

Критерии оценки:

- Правильность сборки (модель собрана правильно и в полном объеме);
- Правильность написания программы (программа написана без ошибок);
- Самостоятельность работы (модель собрана правильно, программа написана без ошибок, обучающийся всё сделал самостоятельно);

Творческие работы по собственному замыслу

Основной критерий - соответствие результата учебной задаче.

Примерные критерии:

- качество исполнения (правильность сборки, прочность, завершенностьконструкции);
- сложность конструкции (количество использованных деталей);
- самостоятельность сборки конструкции;
- работоспособность модели;
- самостоятельность в написании программы;
- правильность написания программы;
- полная самостоятельность в выполнении проекта;
- ответы на дополнительные и уточняющие вопросы;
- полнота в представлении всех этапов работы над роботом;

Учебный план

Название раздела,	Количество часов			Формы	
темы	Все	Теор ия	Практи ка	аттестации/ контроля	
Введение	2	2	0	Беседа	
Конструирование	64	26	36	Практическая работа	
Робот «Чертежник»	26	8	18	Практическая работа	
Обучающий программный комплекс «Пиктомир»	32	8	22	Беседа Контрольное задание	
Графический редактор	10	4	6	Беседа Контрольное задание	

Основы радиоэлектроники	12	4	8	Беседа Контрольное задание
Итоговый контроль	4	0	4	Беседа
Экскурсия	2	2	0	Беседа
Всего:	152	58	94	

Содержание учебного плана

Введение (4 часа)

- Правила поведения и ТБ (2 часа):
 - Инструктаж по технике безопасности
 - Организация рабочего места
 - Первичный инструктаж по работе с инструментами
- Знакомство с программой (2 часа):
 - Цели и задачи курса
 - Демонстрация образцов работ
 - Обзор материалов и инструментов

Конструирование (64 часа)

- Основы работы с инструментами (4 часа):
 - Знакомство с монтажным инструментом
 - Правила пользования инструментами
 - Практическое освоение базовых операций
- Идентификация деталей (4 часа):
 - Изучение каталога деталей
 - Классификация элементов конструктора

- Практическая работа по определению деталей
- Схематическое моделирование (4 часа):
 - Основы чтения схем
 - Создание простых чертежей
 - Алгоритм сборки по схеме
- Чтение чертежей (4 часа):
 - Основы технического черчения
 - Проекции объёмных деталей
 - Практические упражнения
- Виды соединений (4 часа):
 - Типы креплений
 - Особенности различных соединений
 - Практическое применение
- Базовые конструкции (8 часов):
 - Практическая работа «Буквы»
 - Практическая работа «Цифры»
 - Практическая работа «Подвижные соединения»
- Творческие проекты (8 часов):
 - Игра «Волшебный конвертик»
 - Проект «Стул»
 - Проект «Звезда»
 - Проект «Столик»
- Комплексные модели (8 часов):
 - Проект «Змейка»

- Проект «Механический город»
- Проект «Железная дорога»

Робот «Чертежник» (28 часов)

- Теоретическая база (8 часов):
 - Основные команды
 - Программирование движений
 - Создание простых алгоритмов
- Практические задания (20 часов):
 - Черчение по диктовку
 - Работа с технологическими картами
 - Симметричные построения
 - Создание геометрических фигур

Программный комплекс «ПиктоМир» (32 часов)

- **Основы работы** (6 часов):
 - Интерфейс программы
 - Базовые команды
 - История создания
- Алгоритмизация (8 часов):
 - Повторение
 - Ветвление
 - Рекурсия
- Практические проекты (20 часов):
 - Управление роботом Вертун
 - Вспомогательные алгоритмы

- Ремонт космодрома
- Создание сложных программ

Графический редактор (10 часов)

- **Основы работы** (2 часа):
 - Интерфейс Paint
 - Основные инструменты
 - Сохранение проектов
- Практическое моделирование (8 часов):
 - Работа с примитивами
 - Проект «Тюльпан»
 - Проект «Ракета»
 - Проект «Дом»

Основы радиоэлектроники (8 часов)

- Теоретическая часть (4 часов):
 - Основы электричества
 - Радиоэлектронные компоненты
 - Принципы работы схем
- Практические работы (6 часов):
 - Сборка светофора
 - Создание маяка
 - Сборка терменвокса

Итоговый контроль (4 часа)

- Проектная работа (2 часа):
 - Разработка концепции

- Создание модели
- Подготовка презентации

• **Защита проектов** (2 часа):

- Презентация работ
- Подведение итогов

Материально-техническое обеспечение

- 1. Металлический конструктор «Механик»
- 2. Электронный конструктор «Знаток»
- 3. Программный Комплекс «ПиктоМир»
- 4. Персональные компьютер
- 5. Kohctpyktop LEGO MINDSTORMS NXT 2.0
- 6. Расходные материалы: аккумуляторы.

При организации практических занятий и творческих проектов формируются малые группы, состоящие из 2-3 обучающихся. Для каждой группы выделяется отдельное рабочее место, состоящее из компьютера и конструктора.

Календарный учебный график на 2025-2026 учебный год

№	Дата	Тема занятия	Часы	Форма заняти я/ аттест ации
1	02.09.2025	Вводное занятие. Организация рабочего места.	2	Лекция, практич еская работа
2	05.09.2025	Правила и приемы пользования монтажным инструментом.	2	Лекция
3	09.09.2025	Упражнения на соединения деталей конструктора.	2	Практич еская работа
4	12.09.2025	Алгоритм изготовления моделей из конструктора.	2	Практич еская работа
5	16.09.2025	Понятие схематического рисунка. Правила и порядок чтения изображений объемных деталей.	2	Лекция
6	19.09.2025	Входная аттестация : «Робот», «Мельница», «Самокат», «Лес».	2	Входная аттестац ия
7	23.09.2025	Принципы и правила сборки подвижных моделей.	2	Лекция
8	26.09.2025	Элементы простейших машин, механизмов.	2	Практич еская работа
9	30.09.2025	Способы соединения. Ось и колесо.	2	Практич еская работа
10	03.10.2025	Сборка модели: «Тачка», «Тележка», «Тележка с прицепом»	2	Практич еская работа
11	07.10.2025	Правила и приемы монтажа изделий из готовых деталей конструктора.	2	Лекция
12	10.10.2025	Сборка модели «Самосвал», «Пожарная машина», «Лесовоз», «Грузовик».	2	Практи ческая работа

13	14.10.2025	Устройство простейшего подъемника.	2	Практи ческая работа
14	17.10.2025	Сборка модели: строительные машины	2	Практи ческая работа
15	21.10.2025	Дополнение моделей, собранных по техническому рисунку	2	Практи ческая работа
16	24.10.2025	Автофургон», «Фура», «Маршрутное такси».	2	Практи ческая работа
17	28.10.2025	Закрепление понятий о деталях конструктора	2	Практи ческая работа
18	02.11.2025	Практическая работа: коллективная работа «Гараж»	2	Практи ческая работа
19	07.11.2025	Алгоритм изготовления моделей из металлического конструктора: по словесному описанию.	2	Практи ческая работа
20	11.11.2025	«Геометрические фигуры»	2	Практи ческая работа
21	14.11.2025	Сборка модели: «Домик».	2	Практи ческая работа
22	18.11.2025	Сборка модели: «Цветы».	2	Практи ческая работа
23	21.11.2025	Техника в прошлом, настоящем, будущем.	2	Практи ческая работа
24	25.11.2025	Сборка модели: «Дорожный знак».	2	Практи ческая работа
25	28.11.2025	Коллективная работа «Наш механический город».	2	Практи ческая работа
26	02.12.2025	Железные дороги в России.	2	Лекция
27	05.12.2025	Коллективная работа «Железная дорога».	2	Практи ческая работа

28	09.12.2025	История создания самолета. Создание моделей.	2	Практи ческая работа
29	12.12.2025	Сборка модели: «Самолет», «Самолет будущего».	2	Практи ческая работа
30	16.12.2025	Промежуточная аттестация: Коллективная работа «Наша эскадрилья».	2	Промеж уточная аттеста ция
31	19.12.2025	Сборка модели: «Зимняя сказка».	2	Практи ческая работа
32	23.12.2025	Сборка модели: «Снежинка», «Новогодняя елка», «Звезда».	2	Практи ческая работа
33	26.12.2025	Понятие симметрии. Симметрия в технике и конструировании.	2	Лекция
34	09.01.2026	«Основные элементы конструктора Алгоритмы- сборки».	2	Практи ческая работа
35	13.01.2026	Робот «Чертежник», основные понятие применение в теории и на практике.	2	Практи ческая работа
36	16.01.2026	Основные команды робота «Чертежника».	2	Практи ческая работа
37	20.01.2026	Выполнение чертежей под диктовку на слух.	2	Практи ческая работа
38	23.01.2026	Самостоятельное выполнение чертежа и его диктовка, для выполнения другими обучающимися.	2	Практи ческая работа
39	27.01.2026	Дополнительные команды робота «Чертежника».	2	Прак тиче ская рабо та
40	30.01.2026	Выполнение чертежей под диктовку на слух.	2	Прак тиче ская рабо та

41	03.02.2026	Выполнение чертежей по технологическим картам.	2	Прак тиче ская рабо та
42	06.02.2026	Составление технологических карт.	2	Прак тиче ская рабо та
43	10.02.2026	Понятие симметрии на чертежах и рисунках.	2	Прак тиче ская рабо та
44	13.02.2026	Выполнение чертежей по принципу «дорисуй половинку».	2	Прак тиче ская рабо та
45	17.02.2026	Составление технологических карт по готовым чертежам.	2	Прак тиче ская рабо та
46	20.02.2026	Составление технологических карт по собственным схемам, рисункам и чертежам.	2	Прак тиче ская рабо та
47	24.02.2026	Знакомство с программным комплексом «ПиктоМир».	2	Прак тиче ская рабо та
48	27.02.2026	Знакомство с основными командами «ПиктоМир».	2	Прак тиче ская рабо та
49	03.03.2026	«Ремонт простых участков космодрома».	2	Прак тиче ская рабо та

50	06.03.2026	Вспомогательный алгоритм.	2	Прак тиче ская рабо та
51	10.03.2026	«Ремонт участков космодрома с применением вспомогательного алгоритма»	2	Прак тиче ская рабо та
52	13.03.2026	Повторители, базовое понятие «Цикла».	2	Прак тиче ская рабо та
53	17.03.2026	«Ремонт участков космодрома с применением повторителей»	2	Прак тиче ская рабо та
53	20.03.2026	«Ремонт участков космодрома с применением повторителей»	2	Прак тиче ская рабо та
54	24.03.2026	«Ремонт участков космодрома с применением вспомогательного алгоритма и повторителей»	2	Прак тиче ская рабо та
55	27.03.2026	«Игра Буквы», (командное соревнование на время и правильность ремонта космодрома).	2	Прак тиче ская рабо та
56	31.03.2027	«Ремонт космодрома с применением двух вспомогательных алгоритмов»	2	Прак тиче ская рабо та
57	03.04.2026	«Ремонт космодрома с применением двух вспомогательных алгоритмов и повторителей.»	2	Прак тиче ская рабо та

58	07.04.2026	Понятие условия при выполнении алгоритма роботом Вертуном.	2	Прак тиче ская рабо та
59	10.04.2026	«Ремонт космодрома с применением условий»	2	Прак тиче ская рабо та
60	14.04.2026	«Ремонт космодрома с применением двух вспомогательных алгоритмов, повторителей и условий»	2	Прак тиче ская рабо та
61	17.04.2026	Алгоритмы их применение при создании программ и управлении роботами и механизмами.	2	Прак тиче ская рабо та
62	21.04.2026	«Изучение режима Алгоритмика программы ПиктоМир» (робот перемещающей грузы)	2	Прак тиче ская рабо та
63	24.04.2026	Знакомство с графическим редактором Paint.	2	Прак тиче ская рабо та
64	28.04.2026	Основные команды меню, управление проектом, сохранение и открытие проектов.	2	Прак тиче ская рабо та
65	05.05.2026	Изучение и применение основных графических примитивов редактора.	2	Прак тиче ская рабо та

66	08.05.2026	Построение изображений.	2	Прак тиче ская рабо та
67	12.05.2026	Построение изображений «Тюльпан», «Ракета», «Дом».	2	Прак тиче ская рабо та
68	15.05.2026	Итоговая аттестация: индивидуальные проекты	2	Итогова я аттеста ция
69	19.05.2026	Понятие робототехники. Основные компоненты набора NXT 2.0: «Робот-пятиминутка».	2	Прак тиче ская рабо та
70	22.05.2026	Сборка модели «Светофор».	2	Прак тиче ская рабо та
71	26.05.2026	Сборка модели «Робот-сегвей».	2	Прак тиче ская рабо та
72	29.05.2026	Сборка модели «Робот-внедорожник».	2	Прак тиче ская рабо та
		Итого:	144	

Список литературы

Литература для педагога

Основная

- 1. Беликовская Л. Г. Использование LEGO-роботов в инженерных проектах школьников. ДМК Пресс, 2016.
 - 2. Данилов О. Е. Применение конструирования и программирования робототехнических устройств в обучении

КаКинновационная образовательная технология // Молодой ученый. — 2016. — №16. — с. 332-336.

- 3. Иванов А.А. Основы робототехники. Учебное пособие Форум, 2015.
- 4. Копосов Д.Г., Первый шаг в робототехнику: практикум для 5-6 классов /Д.Г. Копосов / М.: Бином. Лаборатория знаний. 2014 г. 288 с.
- 5. Копосов Д.Г., Первый шаг в робототехнику. Рабочая тетрадь для 5–6классов / Д.Г. Копосов / М.: Бином. Лаборатория знаний. 2014 г. 88 с.
- 6. Филиппов С.А., Робототехника для детей и родителей, 3-издание / С.А.Филиппов / С-Пб, «Наука». 2013 г.
- 7. Цуканова Е.А., Зайцева Н.Н. Конструируем роботов н а LEGO® MINDSTORMS® Education NXT. М.:БИНОМ. Лаборатория знаний, 2017.
- 8. Шевалдиной С. Г. Уроки Лего-конструирования в школе. Методическое пособие. БИНОМ, 2013.
- 9. Блог «Роботы и робототехника» http://insiderobot.blogspot.ru/
- 10. Образовательная робототехника: дайджест актуальных материалов / ГАОУ ДПО «Институт развития образования Свердловской области»; Библиотечно-информационный центр; сост. Т. Г. Попова. Екатеринбург: ГАОУ ДПО СО
- 11. «ИРО», 2015. 70 с.
- 12. Роботы, робототехника, микроконтроллеры. http://myrobot.ru/

Дополнительная литература

- 1. Филиппов С.А. Робототехника для детей и родителей¹. С.А.Филиппов.СПб: Наука, 2010.
- 2. Филиппов С.А. Робототехника для детей и родителей. Издание 2-е. СПб.:Наука, 2011.
- 3. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г.
- 4. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
 - 5. Сайт российской ассоциации образовательной робототехники [Электронный ресурс]. Режим доступа: http://raor.ru/.
 - 6. Сайт Робототехника. Инженерно-технические к а д р ы инновационной России [Электронный ресурс]. Режим доступа: http://www.robosport.ru.

Литература для детей

Основная

- 1. Филиппов С.А., Робототехника для детей и родителей, 3-издание / С.А.Филиппов / С-Пб, «Наука». 2013 г.
- 2. Копосов Д.Г., Первый шаг в робототехнику: практикум для
- 3. С 2013 г. рекомендуется к использованию: Робототехника для

детей и родителей, 3-е издание.

- 4. С.А.Филиппов. СПб: Наука, 2013.
- 5. Соммер Улли. Программирование микроконтроллерных плат Arduino/Freeduino, СПб.: БХВ-Петербург, 2013. 256 с.
- 6. Хофман Михаэль. Микроконтроллеры для начинающих, СПб.: БХВ-Петербург, 2014. 304с.
- 7. Том Иго. Arduino, датчики и сети для связи устройств. СПб.: БХВ-Петербург, 2015. 544с.
- 8. Петин В.В., Биняковский А.А. Практическая энциклопедия Arduino, М.:ДМК Пресс, 2016. 152с.